By W. Hoppe and J. Gassmann

Abteilung für Röntgenstrukturforschung am Max-Planck-Institut für Eiweiss- und Lederforschung, München, Germany and Abteilung für Strukturforschung am Physikalisch-Chemischen Institut der Technischen Hochschule, München, Germany

(Received 14 June 1967)

The aim of the method is to replace successive Fourier syntheses by a treatment in which the two discontinuous decisions of the Fourier method (determination of peaks and assignment of weights of either zero or one to them) is replaced by two more cautious continuous processes. This procedure has been fully automated and its application to hypothetical test structures and to two three-dimensional structures is reported.

1. Introduction

From the work of Luzzati (1953) and Ramachandran (1964) the characteristic features of a Fourier synthesis computed with phases from a partially known structure are well-known. If one compares the Fourier synthesis with phases from all atoms and that with phases from only some atoms of a structure, the different types of electron-density peak occurring in the latter Fourier synthesis are:

- (a) Enhanced peaks at the sites of known atoms.
- (b) Reduced peaks at the sites of unknown atoms.
- (c) Reduced peaks at the sites of wrongly placed atoms.
- (d) Background-peaks.

The method generally used to deduce the correct electron density q_{corr} from the approximate density q_{app} is the method of successive Fourier syntheses. A characteristic feature of this method is a twofold discontinuity (yes-no decision) in the determination of atoms. In principle one first determines all peak positions either manually or by computer. In a second step the peaks are given weight $g_i = 0$ to exclude or $g_i = 1$ to include them as possible atomic sites. The usual criterion for giving a peak unit weight is its height in the Fourier synthesis. This criterion is however, not always strictly followed and chemical evidence (bond length, molecular structure, packing considerations, etc.) and last but not least human intuition can help in making a more significant choice. A somewhat different procedure has recently been devised by Rollett & Hodgson (1962). Newly selected maxima in a Fourier synthesis are not immediately treated in the structurefactor calculations as atoms with weight $g_1 = 1$, but are given an initial weight $g_1 = 0$. These weights are varied by least-squares procedures. After a few cycles of leastsquares refinement a peak that has attained a weight $g_j > 0$ is taken as a new atom (and given weight $g_j = 1$), whereas $g_j \leq 0$ indicates a background peak (and is given weight $g_1 = 0$). The atomic sites thus determined are included in the calculation of phases for the next Fourier synthesis, after which this 'double-looped' cycle (Fourier and least squares) repeats itself.

Some years ago we introduced a new method named phase correction for the determination of a structure, which like the procedure of successive Fourier syntheses starts from approximate phases (Hoppe, Huber & Gassmann, 1963; Gassmann, 1966; Hoppe, 1966). The name 'phase correction' indicates that this method is not intended to work as an ordinary refinement procedure,* but rather in the initial stage of the determination of the structure (e.g. approximate heavy atom phases in a heavy atom structure). The main difference between the method of 'phase correction' and both the successive Fourier analysis and the method of Rollett & Hodgson (1962) is that the twofold discontinuity (yesno decision) is replaced by a continuous treatment. The first part of this treatment consists in working on the whole continuous electron density distribution (not on discrete peaks). The second consists in attaching to each point **r** of the electron density function $\rho(\mathbf{r})$ a continuous weighting function $g(\mathbf{r})$ which depends on the electron density (instead of applying discontinuous weights $g_i = 0$ or $g_i = 1$ to selected peaks).

The advantages of this continuous treatment are as follows: (1) All the information contained in the electron density can be used. This is especially important in the case of diffuse and unresolved maxima where exact peak positions cannot be defined. (2) The small change in electron density per cycle due to the continuous weighting function $g(\mathbf{r})$ leads to a wider range of convergence than the more abrupt and discontinuous treatment of successive Fourier syntheses generally used.

This paper describes the theory and its application to hypothetical test structures and to two three-dimensional structure determinations. The method has also been successfully applied in four other structure determinations (to be published).

^{*} Initially we called the method *phase refinement* but to avoid confusion with another method (Hoppe, 1963) we changed the name to *phase correction*.

2. Theory of phase correction

The initial electron density ρ_{app} should be subjected to a modification with the following effects:

- (a) Reduction of the enhanced maxima at known atomic sites.
- (b) Enhancement of the reduced maxima at unknown atomic sites.
- (c) Reduction of the reduced maxima at wrongly placed atomic sites.
- (d) Reduction of background.

An improved electron density ϱ^* may be derived by subjecting each point in the unit cell to the process $\varrho(\mathbf{r}) \rightarrow \varrho^*(\mathbf{r})$. If one assumes like atoms in the structure, this modification $\varrho \rightarrow \varrho^*$ is a unique function of ϱ and may be written as $\varrho^* = g(\varrho) \cdot \varrho$ (the case of unlike atoms is treated separately). The function $g(\varrho)$ may be developed as a Taylor series:

$$\varrho^* = \sum_{n=1}^{\infty} a_n \cdot \varrho^n \, .$$

The coefficient a_0 must be zero, since for $\rho = 0$, the condition is $\rho^* = 0$.

Initial calculations showed that phase correction using the first two powers $\varrho^* = a_1 \cdot \varrho + a_2 \cdot \varrho^2$ did not improve the electron density. An improvement was however achieved by using one more term:

$$\varrho^* = g(\varrho) \cdot \varrho = a\varrho + b \cdot \varrho^2 + c \cdot \varrho^3 . \tag{1}$$

A diagram of this function is given in Fig.1. The peak height of the assumed like atoms has been defined as $\rho = 1$. The values of the parameters a, b and c depend on the conditions (a) to (d) for improving the electron density and on the threshold T which may be calculated by using the ratio 'known structure/total structure'. T is the threshold for increasing $(\rho_{app} > T)$ and decreasing $(\rho_{app} < T)$ the electron density. One determines T as the averaged relative peak height of an unknown atom. The value of T depends on the amount of known structure and has been calculated by Luzzati (1953), who used statistical arguments (see Fig.2). We have used a different method, which calculates the relative peak height from convolution principles. To a good approximation the relative peak height for unknown atoms is found to be

where

$$T \propto \sigma_P$$

$$\sigma_P^2 = \sum_{j=1}^P \frac{Z_j^2}{\sum_{j=1}^N Z_j^2}$$

 $(Z_j = \text{atomic number}, P = \text{number of known atoms}, N = \text{total number of atoms}).$

Using Luzzati's result $T = \frac{1}{2}$ for the completely known structure (acentric case) we obtain $T = \frac{1}{2} \cdot \sigma_P$. This is in good agreement with Luzzati's result (see Fig.2).

The experimental results showed that the process of phase correction is not very sensitive to the exact value of the threshold T. This is important if one has postu-

lated false atomic sites at the beginning of phase correction and starts calculations with a too high value of T. In the experiments reported in this paper we have always used a value T=0,3 which corresponds to a known structure part σ_p^2 of about 40–50%. The modification of electron density [equation (1)] is also possible in reciprocal space. Here the equivalent relation reads:

Fig. 1. Improved electron density: $\varrho^* = a\varrho + b\varrho^2 + c\varrho^3$, where a = (1-2T)/(1-T), b = (1+T)(1-T), c = -1/(1-T). T is the threshold for depressing or enhancing the electron density and may be calculated from the ratio 'known structure/total structure'. The stepwise curve shows the effect of equation (1) on a peak in repeated phase correction cycles. This step-curve gives schematically the effect of phase correction $(\varrho \rightarrow \varrho^*)$ on the electron density. In the calculations only the phases from ϱ^* are used together with the experimental values of the structure factors.

Fig. 2. Averaged relative peak height T of unknown atoms as a function of the amount of the known structure part $(\sigma_P^2 \text{ and } \varphi)$. The continuous curve gives Luzzati's result, the dashed curve represents the function we used. Since phase correction is not very sensitive to the exact value of T, a value of T=0.3 (broken line) was used in the experiments. The two abscissae result from the ratio 'known structure/ total structure' (σ_P^2) and the ratio 'known structure/unknown P N

structure' (φ). $\sigma_P^2 = \sum_{j=1}^{P} Z_j^2 / \sum_{j=1}^{N} Z_j^2$, $\varphi = \sigma_P^2 / (1 - \sigma_P^2)$.

$$\mathbf{F}_{\hbar} = a \mathbf{F}_{\hbar}^{\mathrm{app}} + b S_{\hbar} \sum_{h'} \mathbf{F}_{\hbar'} \mathbf{F}_{\hbar-h'} + c S'_{\hbar} \sum_{h'} \sum_{h''} \mathbf{F}_{\hbar''} \mathbf{F}_{\hbar'-h''} \mathbf{F}_{\hbar-h'}$$
(2)

A new structure factor may then be derived consisting of the experimental value of $|F_{exp}|$ and the phase φ_h calculated from relation (2):

$$\mathbf{F}_{\text{corr}} = |F_{\text{exp}}| \exp(i\varphi_h) . \tag{2a}$$

This phase correction process (relations 2, 2a) has been programmed to work continuously in cycles without calculating any intermediate Fourier synthesis.

Naturally the modification of the electron density in equation (1) could also be done in direct space. The phases of the modified electron density equivalent to equation (2) have then to be calculated by a Fourier transformation of the modified electron density ('reciprocal Fourier synthesis'). A special advantage of this combination of Fourier synthesis and reciprocal Fourier synthesis is that it allows the use of arbitrary and complicated weighting functions. In structures containing more than about 40 atoms calculation with the reciprocal Fourier synthesis requires less computing time. It is of vital importance for the method that the experimental structure factors be used in combination with the phases calculated from equation (2) [see $\S 3$ condition (c)] or the equivalent reciprocal Fourier synthesis. In the following we propose to show how phase correction copes with requirements (a) to (d) for improving the electron density.

Fig. 3. Determination of the phase-corrected light atom contribution in a heavy-atom structure. The convolution of equation (2a) changes F_L^0 into $F_L \text{ conv}$, which after scaling gives a new structure factor phase φ_1 . F_L^1 can then be calculated, combining this new phase φ_1 with the value $|F_{exp}|$.

3. Improvement of the electron density by phase correction

Reduction of known atomic peaks [condition (a)]

Fig. 1 explains in principle how peaks with $\rho > 1$ are reduced by repeated phase correction $(\rho \rightarrow \rho^*)$ and ultimately reach $\rho = 1$.

Enhancement of unknown atomic peaks [condition (b)]

In general, there are two types of unknown atomic maxima. Maxima of unknown atoms which are above the threshold T at the beginning of phase correction ('first order atoms') will increase steadily until they reach their full heights. Maxima of unknown atoms which initially have a height below the threshold T ('second order atoms') will be depressed in the first few cycles of phase correction. At a certain stage, the first order atoms will have increased so much that the 'known structure' (=initial structure + first order atoms) shifts the peaks of the second order atoms above the threshold T. From here on these peaks also increase steadily (see experimental results on phyllochlorine ester, § 5, and sulpholipid, § 6).

Reduction of wrongly placed atoms [condition (c)]

This is one of the most important features of phase correction which can best be explained by comparison with the enhancement of unknown atomic peaks: Equation (2a) $\mathbf{F}_h = |F_{exp}| \exp(i\varphi_h)$ may be described in real space as a convolution of the 'Patterson-like' function with Fourier coefficients $|F_{exp}|$ with a 'phase synthesis' with Fourier coefficients $\mathbf{F}_h/|F_h|$.

Assuming two peaks of equal height in the initial Fourier synthesis, one resulting from an unknown correct atom, the other from a wrongly placed atom, phase correction treats these peaks as follows: According to equation (1) or (2), there is no difference in the enhancement of these two peaks. The phase factor $\exp(i\varphi_h)$ in equation (2a) therefore gives no indication as to the correctness of the peaks. However, the nonorigin peaks of the 'Patterson-like' function calculated with the use of coefficients $|F_{exp}|$, when convoluted with the function calculated with the phase factor $\exp(i\varphi_h)$ only give contributions to the correct atomic peaks. Thus in equation (2a) it is the magnitude of the experimental structure factors which enhances the height of the correct peak above the wrong peak. In the course of the phase correction cycles this finally leads to the elimination of the false peak (see experimental results, 18-C-test-structure, § 5).

Reduction of background [condition (d)]

Fig. 1 explains the elimination of background below the threshold *T*. Background peaks above the threshold show a behaviour similar to peaks due to wrongly placed atoms (see experimental results, phyllochlorine ester, § 5) and are finally eliminated. Holes $(-0.5 \le \rho \le 0)$ are also eliminated.

4. Extension of phase correction to heavy-atom structures

Throughout the preceding section it has been assumed that all atoms have approximately the same scattering power. In this case the phase correction procedure may be looked upon as a continuous weighting scheme for the Fourier synthesis. Each point in the Fourier synthesis is given a weight g, which is a unique function of the existing electron density g:

$$\varrho^* = g(\varrho) \cdot \varrho \; .$$

In the case of equation (1):

$$g(\varrho) = a + b\varrho + c\varrho^2 \; .$$

The uniqueness of $g(\varrho)$ results from the fact that for a structure containing only like atoms the structure factor is to a good approximation:

$$\mathbf{F}_{h} = f_{h} \sum_{j} g_{j} \exp\left(2\pi i \mathbf{h} \mathbf{r}_{j}\right), \qquad (3)$$

f = form factor with the overall temperature factor included

 $g_j =$ weight for atom j

 $g_j \ge 1$ for known atoms

 $g_i < 1$ for unknown atoms.

If such a structure factor is modified by phase correction the relative weights g_j will be altered but not the common form factor. The heights of the atomic maxima change but their form remains constant. If different kinds of atom are present in a structure the continuous weight $g(\varrho)$ is not a unique function of ϱ any more but depends on the form factors of the various atoms. This type of phase correction is obviously possible in real space, but can also be undertaken in reciprocal space by using Woolfson's (1958) extension of Sayre's formula. This leads to multiple convolutions, which are very lengthy. The simplest method is therefore to exclude the heavy atoms and to start phase correction with the light atom part of the structure. The positions of the heavy atoms can be obtained from a Patterson synthesis and their contributions φ_s to the phases calculated. The structure factor for the light atom part of the structure is then:

Fig. 5. Fourier synthesis of a two-dimensional 18-atom test structure, phases with 17 correct atoms and one wrongly placed atom (\times). After 18 cycles, the missing atom (black dot) had nearly full height (95%), and the wrongly placed atom had disappeared (10%).

Fig. 4. Fourier synthesis of a two-dimensional 5-atom test structure phased with 3 atoms. After 10 cycles of phase correction, all 5 atoms had equal heights.

Fig. 6. Fourier synthesis of a 24-atom test structure phased with 8 atoms in approximately correct positions (deviation $\simeq 0.15$ Å). The structure factor magnitudes were statistically wrong by $\pm 10\%$, and the atoms had temperature factors between 2.8 and 3.7. Only the largest structure factors (33%) inside the Cu sphere were used for the Fourier synthesis. Usual R index: R = 58%.

Fig. 7. Same structure as in Fig. 6 after 41 cycles of phase correction. Very high convergence to the correct structure has occurred.

Fig. 8. Fourier synthesis of a 24-atom test structure phased with 2 P atoms in approximately correct positions (deviation $\simeq 0.15$ Å).

Fig.9. Same structure as in Fig.8 after 30 cycles of phase correction. The locations of the two P atoms used for initial phasing are marked by small crosses.

$$\mathbf{F}_{L}^{0} = |F_{\text{exp}}| \exp(i\varphi_{s}) - \sum_{j_{s}=1}^{s} f_{j_{s}} \exp(2\pi i \mathbf{h} \mathbf{r}_{j_{s}}), \quad (4)$$

S = number of heavy atoms.

The phase correction procedure will then modify \mathbf{F}_{L}^{0} in both phase and amplitude to give a new light atom contribution $\mathbf{F}_{L \text{ conv}}$. This value $\mathbf{F}_{L \text{ conv}}$ is then scaled and added to the heavy atom contribution, resulting in a new phase φ_{1} . With this phase φ_{1} and the total structure factor amplitude, the new light atom contribution \mathbf{F}_{L}^{1} may be found (Fig. 3). The scaling of the light atom contribution $\mathbf{F}_{L \text{ conv}}$ may become necessary as the initial light atom contributions are generally too small.

Several ways of determining the new light atom contribution F_L^1 have been tried out. The method described above (Fig. 3) seems to work best. As can be seen from equation (4) the process of subtraction gives three limiting cases:

Fig. 10. (a) Fourier synthesis of phyllochlorine ester after 20 cycles of phase correction. 14 of the 15 unknown side-chain atoms have appeared. First contour line at 1 e.Å⁻³. (b) Final Fourier synthesis of phyllochlorine ester, C₃₃N₄O₂H₃₈. The detailed structure determination is given by Hoppe, Will, Gassmann & Weichselgartner (1967).

(a) The heavy atom contribution is small and the initial phases are very inaccurate.

(b) The heavy atom contribution is big and the accuracy of the remaining amplitudes is very low owing to experimental errors.

(c) The heavy atom contribution produces new symmetry elements.

All these limiting cases have been treated with twodimensional test structures and real three-dimensional structures to demonstrate the range of application of phase correction.

5. Experimental results on light-atom structures

Two-dimensional test structures were first used to test the phase correction procedure. The results of the tests on various structures with the conditions imposed are given below.

(1) 5-atom structure: This structure was phased with three atoms in correct positions. The structure factor values were assumed to have been accurately determined and the temperature factor was taken as zero. Convergence to the correct structure occurred in 5-10 cycles (Fig. 4).

(2) 18-atom structure: This structure with exact |F| and no temperature factor was phased with 17 atoms in correct positions and one atom in a wrong position (Fig. 5). The structure would not refine with ordinary least-squares methods. Phase correction gave the correct structure (18th atom 95% full height, wrong atom 10% full height) in 20 cycles.

(3) 24-atom structure: This structure had plane group pg and cell dimensions a=15, b=10 Å. The random errors in the structure factor amplitudes were $\pm 10\%$. Individual temperature factors between 2.7 and 3.5 were assigned to the atoms: Only one-third of all data inside the Cu sphere were used. The part of the structure taken as initially known consisted of 8 atoms randomly displaced by about 0.15 Å from their correct positions. Phase correction gave convergence to the correct structure (Fig. 6). The convergence improved if only the largest normalized structure factors were used (Fig. 7).

The first real structure to which phase correction was applied was phyllochlorine ester, $C_{33}N_4O_2H_{38}$. This structure (Fig. 10) was a severe test for phase correction as

(a) the observed structure factors had an average error of about 10%. Only 1744 of the 3000 independent reflexions inside the Cu sphere were observed,

(b) the porphyrine ring structure $C_{20}N_4$ had been determined by the convolution molecule technique with an average deviation of 0.24 Å from the final atomic sites, and

(c) the assumed flat conformation of the porphyrine ring with an orientation nearly perpendicular to the symmetry axis $(P2_1)$ produced partial pseudosymmetry.

After 20 cycles of phase correction 14 of the 15 unknown atoms appeared quite clearly (Figs. 10(a) and 11) and the background peaks had been reduced in height and number. At this stage phase correction was stopped. The missing 15th atom was later found to have a temperature factor of B=6.5 Å².

The enhancement of the correct peaks and the depression of the false peaks in the course of phase correction is shown in Figs. 11 and 12. The theoretical curves for improving atomic peaks and depressing background peaks are not reproduced in the experiment. This is probably due to the fact that the initial structure was only very approximately known and the new atomic peaks are diffused and contract only after some cycles of phase correction. In the initial Fourier synthesis seven other peaks that turned out to be real atomic peaks were smaller than the background peaks and the highest unknown atomic peak was only 30% above the highest background peak.

6. Experimental results on heavy-atom structures

The first set of structures consisted of two-dimensional hypothetical test structures P_2C_6 and P_2C_{14} . Assuming known positions of the P atoms, phase correction pro-

duced the correct structure in 10-15 cycles. Structure factor amplitudes were taken as exact, no temperature factor applied and all reflexions inside the Cu sphere were used. The new phases were calculated in the manner indicated in § 3 [equation (4)].

The next test structure was P_2C_{22} , which has the same form as the test structure C_{24} (Fig.7) but with two C atoms replaced by P atoms. All experimental errors occurring in a real structure determination were taken into account:

(a) Incorrect structure factor amplitudes. The amplitudes deviated by $\pm 10\%$ from the correct values, only part ($\simeq \frac{1}{3}$) of all reflexions inside the Cu sphere were used.

(b) Approximate heavy atom positions. The P atoms were displaced by approximately 0.10 Å from their correct sites.

(c) Individual temperature factors. For structure factor calculations all atoms had isotropic temperature factors ranging from 2.2 to 3.5.

In applying these errors individually, it was possible to show that the inaccurate heavy atom positions

Fig. 11. Increasing peak height of the unknown atoms in phyllochlorine ester in the course of phase correction. The dashed curves give the theoretical increase calculated from equation (1).

Fig. 12. Reduction of background peaks in phyllochlorine ester in the course of phase correction. Peak P1 was initially higher than the peaks of 7 of the unknown atoms. The dashed curves give the theoretical reduction expected from equation (1).

hindered the convergence of phase correction most strongly. Fig.8 shows the initial Fourier synthesis of P_2C_{22} phased with 2 P atoms. Fig.9 shows the same Fourier synthesis after 30 cycles of phase correction. The P atoms have been subtracted in both cases.

After these test structures the method was tried on the sulpholipid rubidium salt, $RbSO_{10}C_9H_{17}$, solved by Okaya (1964). This structure has a very high heavy atom contribution and the positions of the Rb atom (y=0.25) and the S atom (y=0.22) from the Patterson synthesis give a partial pseudo-symmetry. This gives an opportunity to test phase correction in cases with big heavy atom contributions and pseudo-symmetry.

Table 1 gives the peaks in an initial Fourier synthesis phased with approximate Rb and S positions. The scaling factor and overall temperature factor were taken from Wilson statistics. Background peaks, residual Rb and S peaks, and mirror atom peaks are found which are considerably higher than the unknown atomic peaks.

230 PEAKS LOCATED AMONG THE 51300 POINTS SUPPLIED

Phase correction proceeded quite fast and the peaks found in a Fourier synthesis after 7 cycles of phase correction are given in Table 2. At this stage no background peak was higher than an atomic peak and it was even possible to distinguish oxygen from carbon.

7. Discussion

The method of phase correction enables one to solve the whole structure if some information on the structure is available. This may consist of phases determined by direct methods or of the positions of heavy atoms or some chemically known group deduced from a Patterson synthesis and/or by the convolution molecule technique of Hoppe (1957). No intermediate Fourier syntheses and no human intervention are needed in the course of phase determination right up to the completion of the structure determination. The test examples calculated show that phase correction works in cases where wrong atomic sites had been postulated.

Table 1. Peaks in the Fourier synthesis of the sulpholid rubidium salt, RbSO₁₀C₉H₁₇, phased with Rb and S contributions (from Patterson synthesis)

Owing to the relative positions of the Rb (y=0,25) and the S atom (y=0,22) in the space group $P2_1$ high false peaks occur as a result of pseudosymmetry.

0. cycle

Sulfolipid

93 UNIQUE PEAKS WERE PICKED							
50	PEAKS OF	HIGHEST	DENSITY ARE	PLOTTED		identified	mirror
	x	٧	2	VALUE OF FUNCTION AT POINT	PLOT CHARACTER	atom peaks	atom peaks
	0.5908	0.2451	0.5692	16.9667	A	02	area prime
	A.7778	0.3406	6.9300	16.7114	Ä	(S)	
	0.1840	6.2463	0.5110	13.2557	ř.	021	
	0.7133	6.2449	0.3733	12.9349	ň	čī	
	A 4777		8 3244	11.7764	Ĕ	C3	
	a 607a	8 2264	0.3240	11 1711	L E	•••	
	. 3996	- 3105	0.7110	11 4053	r c	A	
	0.3000	0.3143				OTT	
	0.1001	0.1400	0.9391	10.7040		03	
	0.3003	0.3517	0.3007	10.7770	2	0111	
	0.1343	0.3081	.0.1104	10.7201			
	0.1203	0.3137	0.2920	10.0407	5	05	
	0.6130	0.20/0	0.1543	4.4324	E S	65	
	0.8/91	0.3415	0.	4.2144		01	
	0.9542	0.4998	0.3156	9.1480		05	(07)
	0.3669	0.1403	0.3001	9.1158	9	a a1	(05)
	0.1852	0.2/26	0.0050	9.0340		02	
	0.7101	0.0456	0.3034	8.7312	2	01	
	0.0949	0.2122	0.1496	8.3072	Ţ	(RD)	
	0.1813	0.4878	0.6825	8.1425	U.	CT.	(07)
	0.8778	0.1124	-0.0000	7.9879	¥.		
	0.7189	0.1743	0.2446	7.9772	W		(05)
	0.5950	0.3030	0.4308	7.9475	X	C2	
	0.2521	0.2580	-0.0000	7.5699	Y	1	
	0.0551	0.2125	0.6902	7.4738	Z,	C 3 .	(
	0.9449	0.7,125	0.3098	7.4738	AL		(C2.)
	0.3875	0.1733	0.0794	7.1519	81		(04)
	0.7542	0.1356	0.7757	7.0565	C1		(0111)
	0,0502	0.4974	0.6709	6.9991	01	-	(05.)
	0.4992	0.3638	0.1776	6.9546	EL	64	()
	6.7088	0.4451	0.3590	6.5022	F1		(01)
	6.3490	0.2197	0.9547	5.8960	61		
	0.7293	0.2463	.0+4779	5.7818	H1		
	0.2916	0.2779	0.1395	5.5691	11		(00)
	0.5908	0.1700	0.4292	5.4603	KL .	e ((02)
	0.6348	0.3798	1.0000	5.1084	L1	60	
	0.9839	0.2460	0.4033	4.9582	#1		
	0.1709	0.2495	0.8947	4.9309	ML		
	0.5006	0.2506	0.0419	4.9023	P1		(
	0.4985	0.1495	0.1706	4.8959	Q1		(C4)
	0.5536	0.6667	0.5249	4.8010	R1		
	0.4464	0.1667	-0.4751	4.8010	51		
	0.8153	0.2651	0.3763	4.7204	11		(06)
	0.6288	0.1065	0.	4.0514	UL		(60)
	-0.0000	0.2029	0.0843	4.5143	VL NI		
	0.7223	0.2331	0.8124		51		
	0.7765	0.2425	0.0497	4.3390	Čţ.		
	0.4085	0.3110	0.5047	4.2238	71		(01)
	0.8228	0.5117	0.3265	9.0387	41		(01)
	0.0223	0.2885	0.9560	4.0293	82		
	0.3950	0.1447	0.1/>0	4.0107			

 Table 2. Peaks in the Fourier synthesis of the sulpholid rubidium salt after 7 cycles phase correction

 The mirror atoms and background peaks have disappeared.

194 PEAKS LOCATED AMONG THE 51300 POINTS SUPPLIED 7. CYCLE Sulfolipid

79	UNIQUE	PEAKS	WERE	PICKED
----	--------	-------	------	--------

X Y Z VALUE OF FUNCTION AT POINT PLOT CHARACTER atom peaks 0.5859 0.2202 0.5669 22.4215 8 02 0.7194 0.3225 0.22453 21.9191 C 05 0.73953 0.3869 0.7770 20.4253 E 0111 0.75553 0.3869 0.7770 20.4253 E 0111 0.7365 0.3669 0.4776 20.4253 E 0111 0.766 0.5126 18.5507 H 02' 05' 0.7177 0.0448 0.3668 18.3507 J 01 01 0.7177 0.0448 0.3668 18.3507 H 01 01 0.7177 0.0448 0.3668 18.3199 K 01 01 0.7177 0.157 0.4131 16.9725 R C2' 01 0.6116 0.2276 0.3237 16.3725 R C3 04 0.6118 0.2377 1	50	PEAKS OF	HIGHEST	DENSITY ARE	PLOTTED				identified
6.7778 0.3337 0.5291 Construction 7.0000 7.00000 7.0000 7.00000		x	Y	,			PRINT		atom peaks
0.5859 0.2202 0.5669 22.4215 0.42 0.7154 0.32202 0.2453 21.9191 C 07 0.73955 0.3190 0.0726 21.7311 D 0 0.7555 0.3190 0.0726 21.7311 D 0 0.7553 0.3665 0.3445 0.3669 20.62537 E 0111 0.7666 0.4974 0.5126 18.5567 H 07 07 0.7667 0.6468 0.5469 18.3567 H 02' 01 0.7757 0.6448 0.5668 18.3567 H 02' 01 0.7767 0.6405 18.3199 K 011 01 01 0.7877 0.64019 -0.0000 17.7859 L 01 01 0.4779 0.6623 17.7259 L 01 01 01 0.4717 0.6643 0.4289 14.0831 01 0.727 01 01		6.7778	0.3337	0.9291		23.9683		A	(=)
0.7154 0.3225 0.2453 21.0161 0 0 0.3955 0.3169 0.7770 21.7311 0 0 0.3665 0.3469 0.7770 20.62537 F 01111 0.3665 0.445 0.3669 20.62537 F 01111 0.3665 0.4454 0.3181 18.7581 G 03' 0.1166 0.2091 0.5126 18.5467 H 02' 0.7757 0.0448 0.3668 18.3597 J 01 0.7757 0.155 0.9465 18.3199 K 011 0.7757 0.1652 17.2556 N C2' 0.179 0.179 0.2809 0.6615 17.2556 N C2' 0.4787 0.4787 0.2678 0.3237 16.3725 R C3 C4 0.4118 0.2307 0.1775 16.3156 S C4 0.4986 0.3610 0.1775 16.3156 S C4 0.4986 0.36317 -0.0000 9.9116 N C6		0.5859	0.2202	0.5669		22.4215		â	à là
0.3955 0.3150 0.0725 21.7311 0 0 0.7553 0.3069 0.7770 20.6253 E 01111 0.3655 0.3445 0.3695 20.5517 F 0 0 0.1668 0.4974 0.3181 18.7581 G 03' 0 0.1668 0.2091 0.5126 18.5467 H 02' 0 0.7677 0.1448 0.3668 18.3507 J 01 0 0.7177 0.0448 0.3668 18.3199 K 011 0 0.6116 0.2762 0.1288 17.6457 M C5 0 0.6116 0.2762 0.1288 17.2556 N C2' 0 C1 0.47104 0.4277 0.6652 16.7325 R C3 0 0 0 C1 0 0 0 C1 0 0 0 C1 0 0 C1 0 C4 C3 0 C3 C3 C4 C3 C3 C4 C3 C4 <td></td> <td>0.7194</td> <td>0.3225</td> <td>0.2453</td> <td></td> <td>21.9191</td> <td></td> <td>č</td> <td></td>		0.7194	0.3225	0.2453		21.9191		č	
6.7553 6.3689 6.7790 20.6253 E OTIT 6.3665 0.3445 0.3695 20.5517 F O7 6.9565 0.4974 0.3181 18.7581 G O3' 6.1868 0.2091 0.5126 18.5467 H O2' 6.7177 0.0448 0.3668 18.3199 K OIT 6.7857 0.1155 0.9405 18.3199 K OIT 6.8784 0.4600 17.6799 L OI OI 6.8784 0.4000 17.6799 L OI OI 6.1799 0.2809 0.6615 17.2656 N C2' 6.7104 0.2395 0.3784 16.9428 P C1 6.1717 0.4652 16.7232 Q C1' C.4786 0.3237 16.3725 R C2' 6.4786 0.3237 16.3725 R C3' C4 C4 C4 6.1118 0.2307 0.1756 15.1690 T (R'') C3' 6.4786 <t< td=""><td></td><td>6.3955</td><td>0.3190</td><td>0-0726</td><td></td><td>21.7311</td><td></td><td>ň</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td></t<>		6.3955	0.3190	0-0726		21.7311		ň	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.3465 0.3465 0.3605 20.5577 F 0711 0.9566 0.4974 0.3181 18.7581 G 037 0.1866 0.42091 0.5126 18.5547 H 071 0.7857 0.115 0.9448 0.3668 18.3507 J 01 0.7857 0.115 0.9405 18.3199 K 011 0.6116 0.2762 0.1288 17.6457 H 05 0.6116 0.2762 0.1288 17.6457 H 05 0.7104 0.2809 0.6645 17.2556 N 022' 0.7104 0.2809 0.6645 17.2558 R 073 0.47104 0.2678 0.3237 16.3725 R 073 0.4118 0.3070 0.4756 15.1690 T (Rh) 0.4931 0.3090 0.4269 14.0831 U 073' 0.4933 0.3017 -0.0000 9.9116 K 05' 0.4020 -0.0000 6.3955 2 0.754 0.4960		6.7553	0.3689	0.7790		20.6253		F	ATTT
6.5568 0.4974 0.391 18.7581 6 037 6.1866 0.2091 0.5126 18.5467 H 02' 6.717 0.0448 0.3666 18.3199 K 011 6.7857 0.1155 0.9465 18.3199 K 01 6.8784 0.4000 17.7959 L 01 6.4787 0.2090 0.6615 17.2656 N C2' 6.7104 0.2395 0.3784 16.9420 P C1 6.7171 0.4777 0.6652 16.7232 Q C1' 6.4787 0.2078 0.3237 16.3725 R C3 6.4786 0.3610 0.1775 16.3156 S C4 6.1118 0.2307 C.1756 15.1690 T (Rn) 6.4936 0.3017 -0.0000 9.9116 M C6 6.4938 0.217 16.0879 V C3' C3' 6.4938 0.217<		0.3665	0.3445	0.3695		20.5517		Ē	
6.1868 6.2091 6.5226 16.547 H 02' 6.7177 0.0448 0.3668 18.3507 J 01 6.7877 0.1155 0.9405 18.3199 K 011 6.8784 0.4019 -0.0000 17.7959 L 01 6.6116 0.2762 0.1288 17.6457 M C5 6.7179 0.2809 0.6615 17.2656 N C2' 6.7106 0.2377 16.3725 R C3 C1' 6.4784 0.4940 0.4269 14.0831 U C2 6.4786 0.3237 16.3725 R C3 C4 6.4798 0.3237 16.3156 S C4 C4 6.1118 0.2307 C.1755 16.3156 S C4 6.4986 0.3651 0.1775 16.43150 S C4 6.5958 0.2031 0.6633 7.9210 X C5 6.5958 0.2010 0.9763 7.9210 X C6 6.5958		6.9568	0.4974	0.3181		18.7581		Ġ	01
0.7177 0.0448 0.3208 10.3507 J 01 0.7857 0.1155 0.4455 10.3199 K 011 0.67857 0.1155 0.4455 10.3199 K 011 0.67857 0.1155 0.4455 10.3199 K 011 0.6174 0.4019 -0.0000 17.7959 L 01 0.1799 0.2009 0.6615 17.2656 N C2' 0.1799 0.2009 0.6615 17.2656 N C2' 0.1710 0.7777 0.6652 16.7232 Q C1' 0.4763 0.2678 0.3237 16.3725 R C3 0.4118 0.2070 0.1756 15.1690 T (Rn) 0.4986 0.3631 0.1775 16.3316 U C2 0.4118 0.2273 0.40831 U C2 C3 0.4433 0.3817 -0.0000 9.9116 N C6 0.5958 0.2101 -0.0000 6.3955 Z 0.4433 0.		0.1868	0.2091	0.5126		18.5467		ň	ŝ
6:7857 0.1155 0.0405 10.3199 K 01T 0.8784 0.4019 -0.0000 17.7959 L 01 0.6116 0.2762 0.1288 17.4657 H C5 0.1799 0.2809 0.6645 17.2656 N C2' 0.1711 0.4717 0.6652 16.7222 Q C1' 0.47877 0.2678 0.3237 16.3725 R C3 0.4986 0.3651 0.1775 16.3156 S C4 0.4986 0.3090 0.4269 14.0831 U C2' 0.4986 0.3090 0.4269 14.0831 U C2' 0.4629 0.2031 0.6631 10.6879 V C3' 0.4629 0.2011 0.6831 10.6879 V C3' 0.4629 0.2011 0.6831 U C2' C3' 0.4629 0.2010 0.9763 6.73955 Z C4' 0.5958 0.2010 -0.0006 6.3955 Z C4' C6' <		0.7177	0.0448	0.3668		18.3507		ï	01
6.8784 6.4019 -0.0000 17.7959 L 01 0.6116 0.2762 0.1288 17.64577 H C5 0.1799 0.2809 0.6645 17.2656 N C2' 0.1799 0.2809 0.6645 17.2656 N C2' 0.1719 0.2395 0.3784 16.9420 P C1 0.4787 0.2678 0.3237 16.3725 R C3 0.4986 6.3651 0.1775 16.3156 S C4 0.4778 0.2077 0.1756 15.1690 T (Rn) 0.4986 0.3651 0.1775 16.3156 S C4 0.4033 0.3090 0.4269 14.0831 U C2 0.46433 0.3817 -0.0000 9.9116 M C6 0.5958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9763 5.9400 A1 0.5958 0.2010 0.9763 5.9400 A1 0.5956 0.8379 <td< td=""><td></td><td>0.7857</td><td>0.1155</td><td>0.9405</td><td></td><td>18.3199</td><td></td><td>x</td><td>OTT.</td></td<>		0.7857	0.1155	0.9405		18.3199		x	OTT.
6.6116 0.2762 0.1280 17.6457 H C2 0.1799 0.2809 0.6615 17.26566 H C2 0.1710 0.2805 0.3784 16.9420 P C1 0.1711 0.4777 0.6652 16.7232 Q C1' 0.4787 0.2678 0.3237 16.3725 R C3 0.4986 0.3651 0.1775 16.3156 S C4 0.4986 0.3090 0.4209 14.0831 U C2 0.4629 0.2031 0.6631 10.6879 V C3' 0.4629 0.2010 0.9763 7.9210 X C5 0.4629 0.2010 0.9763 7.9210 X C5 0.45958 0.2010 0.9763 7.9210 X C5 0.5958 0.2010 0.9763 7.9210 X C5 0.4595 0.1000 6.3955 Z C1 0.5050 0.5958 0.2010 0.9545 5.8379 B1 0.5055 0.4551 <td></td> <td>6.8784</td> <td>0.4019</td> <td>-0.0000</td> <td></td> <td>17.7959</td> <td></td> <td>ï</td> <td>0T</td>		6.8784	0.4019	-0.0000		17.7959		ï	0T
6.1759 6.2805 17.2656 N C2* 6.7104 6.2395 0.3784 16.9420 P C1 6.7104 6.2395 0.3784 16.7232 Q C1* 6.4717 0.6652 16.7232 Q C1* C1* 0.4788 0.2678 0.3237 16.3156 S C4 0.4986 0.3651 0.1775 16.3156 S C4 0.4986 0.3651 0.1775 16.3156 S C4 0.40809 0.2031 0.6031 10.6879 V C3* 0.46433 0.3817 -0.0000 9.9116 M C6 0.5958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9763 5.9400 A1 C5 0.5958 0.2010 0.9555 Z C7454 0.1966 7.8153 S.9400 A1 0.5050 0.4120 0.41831 5.0221 E1 <t< td=""><td></td><td>0.6116</td><td>0.2762</td><td>0.1288</td><td></td><td>17.6457</td><td></td><td>, i i i i i i i i i i i i i i i i i i i</td><td>C5</td></t<>		0.6116	0.2762	0.1288		17.6457		, i i i i i i i i i i i i i i i i i i i	C 5
6.7104 6.2395 0.3784 16.7426 P C1 6.1771 0.4777 0.6652 16.7232 Q C1' 0.4787 0.2678 0.3237 16.3725 R C3 0.4986 0.3651 0.1775 16.3725 R C3 0.4986 0.3651 0.1775 16.3156 S C4 0.1118 0.2307 0.1756 15.1690 T (Rh) 0.4029 0.2031 0.6031 10.6879 V C3' 0.40629 0.2031 0.6033 7.9210 X C6 0.405958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9000 6.3955 Z C7' 0.4551 0.54379 81 C4 C4 C4 0.5056 0.8751 0.9231 E1 C1 C1 0.4552 0.4120 0.1831 5.0231 E1 C1 0.3510 0.1834 0.2743 5.0231 E1 C3 0.3510 <		0.1799	0.2809	0.6615		17.2656		N	C21
6.1771 6.4777 6.4652 16.7232 0 C1' 6.4787 6.2678 6.3237 16.3725 R C3 6.4786 6.3651 0.1775 16.3156 S C4 6.1118 6.2307 C.1756 15.1690 T (Rn) 6.3931 6.3090 6.4269 14.0831 U C2 6.6629 6.2031 6.6831 10.6879 V C3' 6.6433 6.3175 0.9263 6.7348 V C5' 6.7458 6.1965 7.9210 X C6' C5' 6.7458 6.1966 7.9210 X C6' C5' 6.7458 6.1966 7.9210 X C6' C5' 6.7458 6.1966 7.9210 X C6' C1' 6.7458 6.1966 7.9210 X C6' C1' 6.7459 81 C1 C1' C6' C1' 6.7459 6.13		6.7104	0.2395	0.3784		16.9420		P	Cī.
0.4787 0.2278 0.3237 10.3725 R C3 0.4986 0.3651 0.1775 16.3156 S C4 0.4118 0.2307 0.1775 16.3156 S C4 0.4118 0.2307 0.1775 16.3156 S C4 0.4118 0.2307 0.1775 16.37297 V C2 0.6423 0.2031 0.4269 14.0831 U C2 0.6423 0.2031 0.6631 10.6879 V C3' 0.6423 0.2010 0.9763 7.9210 X C6 0.7558 0.2010 0.9763 7.9210 X C6 0.75598 0.2010 0.9763 7.9210 X C6 0.75598 0.2010 0.9763 7.9210 X C6 0.75598 0.2010 0.9763 5.9210 X1 C1 0.5050 0.8153 5.9400 A1 C1 C3 0.5055 0.8377 0.1837		0.1771	0.4777	0.6652		16.7232		0	či'
0.4986 0.3651 0.1775 16.3156 S 04 0.4986 0.2037 0.1756 15.1690 T (Nr) 0.59931 0.3090 0.4269 14.0831 U C2 0.6629 0.2031 0.64831 10.6879 Y C3' 0.6433 0.317 -0.6000 9.9116 N C6 0.5958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9263 6.7348 Y C6 0.7454 0.1966 7.8210 X C6 C6 0.5056 0.8751 0.8080 5.5189 C1 C1 0.3104 0.2451 0.3471 5.1204 D1 C3510 C1434 C2 0.41304 0.2743 5.0231 E1 C3610 C1 C3510 C1 C3510 C1 C3510 C1 C3510 C1 C3510 C1 C3510 C1 C3512 C2 C2		0.4787	0.2678	0.3237		16.3725		8	C3
0.1118 0.2307 0.1756 15.1600 T (p_1) 0.5931 0.3090 0.4269 14.0831 U C2 0.6629 0.2011 0.6631 16.6879 V C3' 0.4433 0.3817 -0.0000 9.9116 N C6 0.5958 0.2010 0.9263 6.7348 Y C6 00315 0.9263 6.7348 Y C6 C1 02522 0.2601 -0.0000 6.3955 Z C1 C1 C1 03510 0.8055 5.8379 81 C1 C1 C1 C1 0.4365 0.8751 0.4080 5.5189 C1 C1 C1 C1 0.4364 0.2743 5.0231 E1 E1 C1 C3510 C1834 C2773 S.0231 E1 0.4364 0.2152 0.4040 4.9455 G1 C3 C1 C3 C1		0.4986	0.3651	0.1775		16.3156		š	ă.
0.5931 0.3090 0.4269 14.0831 U C2." 0.6629 0.2031 0.6631 10.6879 V C3" 0.6633 0.317 -0.6031 10.6879 V C3" 0.65958 0.2010 0.9763 7.9210 X C6 0.5958 0.2010 0.9763 7.9210 X C6 0.42522 0.2001 -0.0000 6.3955 Z C7" 0.5056 0.3175 0.9263 6.7348 Y C5 0.7454 0.1966 7.8153 5.9400 A1 C5 0.5056 0.83751 0.4080 5.5189 C1 C1 0.3510 0.1834 0.2743 5.0231 E1 C3552 C4120 U1831 5.0227 F1 0.3652 0.4120 U.1831 5.0227 F1 C3606 C3295 G1 0.4220 0.1831 0.4204 4.6167 H1 C4665 G1		0.1118	0.2307	0.1756		15.1690		Ť	(R).)
0:0000 0:0000 0:0000 0:01000 0:01000 0:01000 0:01000 0:01000 0:01000 0:01000 0:0000 0:01000 0:0000 0:01000 0:00000 0:0000 0:0000 <		6.5931	0.3090	0.4269		14.0931			è2
0:002: 0:0031 0:0037 0:0037 0:0037 0:0033 0:3017 -0:0030 0:9116 N CC 0:5958 0:2010 0:9763 7:9210 X C 0: 0:315 0:9263 6:7348 Y C 0:7454 0:1966 0:8153 5:9400 A1 0:5050 0:2399 0:0545 5:8379 B1 0:9585 0:8751 0:8080 5:5189 C1 0:1304 0:2451 0:3471 5:0221 E1 0:43510 0:1834 0:277 F1 5 0:3510 0:1834 0:4204 4:6167 H1 0:0452 0:4120 0:3134 0:4204 4:6167 0:0469 0:3284 0:6544 4:4846 J1 0:0469 0:3284 0:6555 4:1814 K1 0:2126 0:1309 0:1261 4:1316 L1 0:8818 0:1710 0:3175 3:9598<		A-4629	6.2031	0.4207		14.0031		ů.	č.
010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 0100000 0100000 0100000 0100000 0100000 01000000 010000000 01000000000 0100000000000000000000000000000000000		0.0027	0.2031	-0.00.01		10.00/7			čá
01.755 01.755		A.505B	0.2010	-0.0000		7.0210		Ţ	
0.2 0.2201 -0.0000 0.3955 Z 0.7454 0.1966 0.3955 Z Al 0.5006 0.239 0.0545 5.8379 Bl 0.5066 0.2399 0.0545 5.8379 Bl 0.30585 0.4751 0.4000 5.5189 Cl 0.3510 0.1834 0.2743 5.0231 El 0.3510 0.4120 0.1831 5.0227 Fl 0.3652 0.4120 0.1831 5.0227 Fl 0.3609 0.3284 0.6544 4.6464 Jl 0.4052 0.2122 0.49400 4.94555 Gl 0.4151 0.1803 0.5055 4.1814 Kl 0.4164 0.1803 0.5055 4.1814 Kl 0.2126 0.1261 4.1316 Ll 0.3375 0.4120 0.4284 3.6289 Ml 0.3244 0.4312 0.6697 3.9596 Ml 0.3233 0.3000 0.1701 0.2486 3.8304 Pl 0.2364 <td< td=""><td></td><td>A.</td><td>a 1105</td><td>0.0763</td><td></td><td>4 7349</td><td></td><td>ĉ</td><td></td></td<>		A.	a 1105	0.0763		4 7349		ĉ	
0.2322 0.2301 -0.2000 0.3332 2 0.7454 0.1966 0.8153 5.9460 A1 0.5006 0.2399 0.0545 5.8379 B1 0.9585 0.871 0.8080 5.5189 C1 0.304 0.2451 0.3471 5.1204 D1 0.3510 0.1834 0.2743 5.0231 E1 0.3510 0.1834 0.2743 5.0227 F1 0.3612 0.2152 0.9490 4.9455 G1 0.3617 0.3134 0.4204 4.6169 H1 0.4649 0.3284 0.6544 4.4846 J1 0.4151 0.1803 0.5055 4.1814 K1 0.4151 0.1803 0.5055 4.1814 K1 0.4324 0.4697 3.9565 N1 0.8334 0.3026 N1 0.8344 0.4312 0.6697 3.9565 N1 0.4384 0.4286 3.8304		A 2622	0.3175	-0.9203		0+1340			
0.1727 0.1730 0.1730 0.1740 0.1740 0.1750		0 74 54	0.2001	-0.0000 d 0163		5 0444		2	
0.2300 0.2377 0.1372 2.6377 0.1 0.3000 0.2457 0.3070 0.5189 0.1 0.1304 0.2451 0.3471 5.1204 0.1 0.3510 0.8344 0.2743 5.0221 $E1$ 0.3552 0.4120 0.1831 5.0227 $F1$ 0.3512 0.4204 4.9455 0.1 0.3612 0.2284 0.4544 4.9455 0.1 0.4151 0.1309 0.4204 4.6167 $H1$ 0.4170 0.3284 0.4204 4.6167 $H1$ 0.4110 0.4204 4.6167 $H1$ 0.2266 $H1$ 0.4212 0.6334 0.6207 3.9598 $M1$ <tr< td=""><td></td><td>0 5 A A A</td><td>6 2200</td><td>0.0133</td><td></td><td>5 9370</td><td></td><td>A1</td><td></td></tr<>		0 5 A A A	6 2200	0.0133		5 9370		A1	
0.1395 0.0131 0.0130 2.5107 $C1$ 0.1304 0.2273 5.0231 $E1$ 0.3510 0.1834 0.2743 5.0221 $E1$ 0.3510 0.1834 0.2743 5.0227 $F1$ 0.3612 0.2152 0.4900 4.9455 $G1$ 0.3612 0.2152 0.4900 4.9455 $G1$ 0.3612 0.2120 4.9455 $G1$ 0.0669 0.3284 0.6544 4.4846 $J1$ 0.4120 0.1201 4.1316 $L1$ 0.2126 0.1309 0.1201 4.1316 $L1$ 0.8818 0.1710 0.22486 3.8364 $P1$ 0.2303 0.68334 3.6289 $Q1$ 0.2364 0.2750 0.1387 3.4333 $R1$ 0.6009 0.0173 -0.00046 3.3887 $S1$ 0.7256 0.4965 0.8117 3.3445 $U1$ 0.7256 0.4965 0.8177 3.3445 <		4 05 85	0 0761	6 9494		5 6 1 9 0		B1	
0.1300 0.1401 0.1401 0.1401 0.1 0.3510 0.1834 0.2703 5.0231 E1 0.0552 0.4120 0.1831 5.0221 F1 0.3512 0.2152 0.9490 4.9455 G1 0.40377 0.3134 0.4204 4.6167 H1 0.0469 0.3284 0.45055 4.1814 K1 0.4151 0.1803 0.5055 4.1814 K1 0.42126 0.1201 4.1316 L1 0.8818 0.1710 0.3175 3.9598 M1 0.4324 0.4612 0.6697 3.9596 N1 1.00000 0.1701 0.2486 3.8304 P1 0.2363 0.4312 0.6697 3.9598 N1 0.4000 0.1701 0.2486 3.6289 Q1 0.2363 0.40173 0.4333 3.6289 Q1 0.4067 0.3333 3.8343 3.3507 T1 0.7256		0.7305	0.0751	0.0000		5 1244			
0.1310 0.1314 0.12143 2.0231 C1 0.0552 0.4120 0.1831 5.0227 F1 0.3612 0.2152 0.9490 4.9455 G1 0.8377 0.3134 0.4204 4.6167 H1 0.0469 0.3284 0.6544 4.4846 J1 0.4151 0.1803 0.5055 4.1814 K1 0.4151 0.1803 0.5055 4.1814 K1 0.4151 0.1803 0.5055 4.1814 K1 0.411 0.309 0.1261 4.1316 L1 0.411 0.4803 0.5055 N1 1 0.9324 0.4312 0.6697 3.9565 N1 1.0000 0.1761 0.2486 3.8304 P1 0.2363 0.00173 -0.00440 3.3889 S1 0.42864 0.4377 3.3445 U1 0.4744 0.033 0.8433 3.5077 T1 0.4765 0.		0.1504	6 1934	0.3712		5 (122)		51	
0.3522 0.4120 0.4251 9.0221 F1 0.3612 0.2125 0.49490 4.9455 G1 0.8377 0.3134 0.4204 4.6169 H1 0.0469 0.3284 0.6544 4.4846 J1 0.4151 0.1803 0.5055 4.1814 K1 0.2126 0.1309 0.1261 4.1316 L1 0.8818 0.1710 0.3175 3.9598 M1 1.00000 0.1761 0.2486 3.8306 P1 0.2363 0. 0.8334 3.6289 Q1 0.2364 0.40173 -0.0647 3.38306 P1 0.2364 0.4750 0.1387 3.4333 R1 0.4009 0.0173 -0.0647 3.3889 S1 0.7256 0.4965 0.8177 3.3445 U1 0.7256 0.4965 0.8171 3.3445 U1 0.6767 9.1000 0.2662 3.2385 V1 0.6778 0.2346 0.8039 3.1376 N1 0.4726		A 4653	0.1034	1 1021		5 6227		<u> </u>	
0.1012 0.1102 0.1102 0.1102 0.1102 0.1 0.8377 0.3134 0.42704 4.6169 H1 0.0469 0.3284 0.6544 4.6169 H1 0.4151 0.1803 0.5055 4.1814 K1 0.2126 0.1309 0.1261 4.1316 L1 0.8377 0.3175 3.9598 M1 0.0324 0.4312 0.6697 3.9565 N1 0.9324 0.4312 0.6697 3.9565 N1 0.1000 0.1317 0.1387 0.1387 0.1387 0.1387 0.13889 N1 0.2363 0. 0.8334 3.5507 T1 0.7256 0.4965 0.8177 3.3445 U1 0.7444 0.0333 0.8343 3.3507 T1 0.2365 V1 0.7256 0.4965 0.8898 3.1676 W1 0.4703 0.4939 N1 0.40705 0.1000 0.8039 3.1396 X1 0.4772 0		A 3612	0.7120	4 9494		2.0227		F1	
0.00011 0.0001 0.0001 0.0001 0.0001 0.0469 0.3284 0.6504 4.4846 J1 0.4151 0.1803 0.5055 4.1814 K1 0.2126 0.1309 0.1261 4.1316 L1 0.8818 0.1710 0.3175 3.9598 M1 0.9324 0.6697 3.9565 N1 1.0000 0.1710 0.2486 3.8304 P1 0.2363 0. 0.8334 3.6289 Q1 0.2364 0.2750 0.1387 3.4333 R1 0.6009 0.0173 -0.00000 3.4333 R1 0.6009 0.0173 -0.00000 3.4333 R1 0.7256 0.4965 0.8177 3.3445 U1 0.7256 0.4965 0.8177 3.3445 U1 0.6763 0.1000 0.2662 3.2385 V1 0.6763 0.1000 0.2662 3.2385 V1 0.67708		0.9012	0.2132	0.7470		4.5433		61	
0.40407 0.42404 0.43444 K1 0.4151 0.1803 0.50555 4.1814 K1 0.2126 0.1309 0.1261 4.1316 L1 0.8818 0.1710 0.3175 3.9598 M1 0.9324 0.4312 0.6697 3.9598 M1 0.9324 0.4312 0.6697 3.9596 M1 0.9324 0.4312 0.6697 3.9596 M1 0.000 0.1761 0.2486 3.8304 P1 0.2363 0. 0.68334 3.6289 Q1 0.2364 0.2750 0.1387 3.4333 R1 0.4009 0.0173 -0.00467 3.3889 S1 0.7256 0.4965 0.8171 3.3845 U1 0.7444 0.0333 3.8343 3.3507 T1 0.7256 0.4965 0.8171 3.3445 U1 0.6675 0.1000 0.2662 3.2385 V1 0.4703 0.2646 3.1306 X1 0.49050 0.1000 0.8039		0.0311	0.3134	0.4544		4.0103			
0.111 0.1033 0.1031 4.1014 K1 0.2126 0.109 0.1261 4.1316 L1 0.8818 0.1710 0.3175 3.9598 M1 0.9324 0.4312 0.6697 3.9565 N1 1.0000 0.1761 0.2486 3.8304 P1 0.2363 0. 0.8334 3.6289 Q1 0.2364 0.0173 -0.0044 3.3889 S1 0.7454 0.4333 3.8343 3.3507 T1 0.7256 0.4965 0.8717 3.3445 U1 0.6675 0.1000 0.2662 3.2385 V1 0.6076 0.2346 0.8039 3.1376 N1 0.4764 0.3039 3.1396 X1 0.4050 0.1000 0.8039 3.1396 X1 0.4703 0.30570 3.1293 V1 0.4774 0.30570 3.1293 V1 0.4770 0.2677 3.4058 0		A 4161	6 1963	0.0344		4.4040		51	
0.23120 0.1307 0.1307 1.9508 M1 0.8318 0.1710 0.3175 3.9565 M1 1.00000 0.1761 0.2486 3.8304 P1 0.2363 0. 0.8334 3.6289 Q1 0.2364 0.2750 0.1387 3.4333 R1 0.4009 0.0173 -0.0044 3.4333 R1 0.4669 0.0173 -0.0044 3.4343 3.3507 0.7256 0.4965 0.8177 3.3445 U1 0.7256 0.4965 0.8217 3.1346 W1 0.6763 0.2346 0.8898 3.1676 W1 0.49050 0.1000 0.8039 3.1396 X1 0.47928 0.2344 0.0570 3.1293 Y1		0.7176	0.1003	0.1241		4.1014			
0.0010 0.1110 0.1115 0.1700 n1 0.9324 0.4312 0.6697 3.9565 N1 1.0000 0.1761 0.2486 3.8304 P1 0.236.3 0. 0.6334 3.6289 Q1 0.2868 0.2750 0.1387 3.4333 R1 0.6009 0.0173 -0.0044 3.3889 S1 0.7444 0.033 0.3433 3.3507 T1 0.7256 0.4965 0.8717 3.3445 U1 0.60675 9.1000 0.2662 3.2385 V1 0.60675 9.1000 0.2662 3.2365 V1 0.60675 9.1000 0.2662 3.2385 V1 0.60708 9.2346 0.6039 3.1376 N1 0.7928 0.2344 0.6570 3.1293 Y1 0.1779 9.2679 3.3068 3.0420 21 0.3178 0.2572 0.8070 3.0385 A2 <		0.8919	0.1710	6 2175		3 0500			
0.1524 0.1514 0.2486 3.8304 P1 0.2363 0. 0.8334 3.6289 Q1 0.2364 0.2750 0.1387 3.4333 R1 0.6009 0.0173 -0.0044 3.3889 S1 0.7444 0.033 3.8343 3.5507 T1 0.7256 0.4965 0.8717 3.3445 U1 0.675 0.1000 0.2662 3.2385 V1 0.6075 0.1000 0.2662 3.2385 V1 0.6075 0.1000 0.2662 3.2385 V1 0.6076 0.2346 0.8098 3.1676 W1 0.49050 0.1000 0.8039 3.1396 X1 0.47928 0.2344 0.0570 3.1293 V1 0.1779 0.2677 0.3068 3.0420 L1 0.3778 0.2572 0.8070 3.0385 A2 0.80570 3.0385 A2 0.80671 3.0385 A2		0.0374	0.4312	0.5115		3.9546		<u></u>	
1.3000 0.1101 0.22400 0.1001 0.1001 0.1101 0.2260 0.1101 0.2400 0.6289 01 0.22806 0.2750 0.1387 3.6333 R1 0.60209 0.0173 -0.0044 3.4333 R1 0.7444 0.0333 0.8343 3.3507 T1 0.7256 0.4965 0.8171 3.3445 U1 0.6675 0.1000 0.2662 3.2385 V1 0.6708 0.2346 0.8898 3.1676 M1 0.4955 0.1000 0.8039 3.1396 X1 0.77928 0.2344 0.0570 3.1293 V1 0.1779 0.2673 0.3068 3.0427 21 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0385 A2		1.0000	0.1761	0.0071		3.9304		01	
0.1303 0.1387 3.4333 R1 0.2864 0.2750 0.1387 3.4333 R1 0.6009 0.0173 -0.0044 3.3889 S1 0.7444 0.0333 0.8433 3.3507 T1 0.7256 0.4965 0.8717 3.3445 U1 0.6075 0.1000 0.2662 3.2385 V1 0.6075 0.1000 0.2662 3.2385 V1 0.6708 0.2346 0.8898 3.1676 W1 0.49050 0.1000 0.8039 3.1396 X1 0.7928 0.2344 0.6570 3.1293 Y1 0.1779 0.2677 0.40570 3.1293 Y1 0.1779 0.2677 0.8070 3.0385 A2 0.80571 0.20357 0.8070 3.0385 A2 0.80572 0.8037 3.0385 A2		0.2363	0.1101	(1 9376		3 4280		01	
0.12020 0.12130 0.12130 0.12130 0.12130 0.4003 0.0173 -0.00040 .33849 S1 0.7444 0.0333 3.8343 3.3507 T1 0.7256 0.4965 0.8177 3.3845 U1 0.7675 0.1000 0.2662 3.2385 V1 0.6075 0.1000 0.2662 3.2385 V1 0.6778 0.2346 0.8898 3.1676 W1 0.9050 0.1000 0.8039 3.1396 X1 0.779.8 0.2344 0.0570 3.1293 V1 0.1779 0.2677 0.3068 3.0420 L1 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0168 B2		0.2968	d. 775a	0.1397		2 4222		Q1 D1	
0.744 0.0321/3 -0.5041 -0.5067 51 0.744 0.033 0.8343 3.3507 T1 0.7256 0.4965 0.8717 3.3445 U1 0.0670 5.100 0.2662 3.2385 V1 0.40708 0.2346 0.8898 3.1676 W1 0.49050 0.1000 0.8039 3.1396 X1 0.49050 0.1000 0.8039 3.1293 Y1 0.4779 0.2679 3.0668 3.0420 21 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.4071 3.0168 B2		0000100	0.3173	-0.0000		3 3990		51	
0.7256 0.4965 0.8373 3.3445 U1 0.0675 0.1000 0.2662 3.2385 V1 0.6076 0.2346 0.8988 3.1676 W1 0.9050 0.1000 0.8039 3.1396 X1 0.7928 0.2344 0.0570 3.1293 Y1 0.1779 0.2679 3.9068 3.0420 L1 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0168 B2		0.7444	6.6333	3.9343		3 35 67		51	
0.125 0.1100 0.2662 3.2385 V1 0.6775 0.1000 0.2662 3.2385 V1 0.6708 0.2346 0.8898 3.1676 W1 0.9050 0.1000 0.8039 3.1396 X1 0.7928 0.2344 0.6570 3.1293 Y1 0.1779 0.2679 0.90568 3.0420 ∠1 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0168 B2		0.7256	0.4965	0.8717		3 3445			
0.1011 0.1001 0.1001 0.1001 0.1001 0.4070 0.1000 0.8039 3.1376 W1 0.49050 0.1000 0.8039 3.1396 X1 0.4793 0.2344 0.60570 3.1293 Y1 0.1779 0.2679 3.0668 3.0420 21 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0168 B2		0.0675	0.1000	0.2662		3.2385		V1	
0.4055 0.1050 0.1050 11 0.4055 0.1060 0.8039 3.13% X1 0.7928 0.2344 0.0570 3.1293 Y1 0.1779 0.2679 3.0468 3.0420 Z1 0.3778 0.2572 0.8070 3.0385 A2 0.8051 0.2647 0.6971 3.0168 B2		0.6708	1.2346	A. AAGA		3.1676		¥1	
0.7928 0.2344 0.0570 3.1293 Y1 0.1779 0.2679 3.9668 3.0420 21 0.3778 0.2572 0.8070 3.0385 A2 0.8651 0.2647 0.6971 3.0186 B2		0.9050	0.1000	0.8039		3,1396		x 1	
0.1779 0.2679 0.3068 3.0420 21 0.3778 0.2572 0.8070 3.0385 A2 0.8651 0.2647 0.6971 3.0385 A2		0.7928	0.2344	0.0570		3,1293		ŶÎ	
U-3778 0-2572 0-8070 3-0385 A2 0-8651 0-2647 (4-6971 3-0168 B2		0.1779	9.2679	3.9068		3.0420		ä	
		0.3778	0.2572	0.8070		3.0385		A2	
		0.8651	0.2647	(.6971		3.0168		BZ	

This particular feature gives the method a distinct advantage over least-squares procedures. The basic difference between the least-squares and phase-correction techniques is that phase correction takes into account all information contained in the structure amplitudes and phases, whereas least squares reduces the amount of information by observing only the peaks occurring in a Fourier synthesis and selecting from these peaks probable atomic sites. It is assumed therefore, that phase correction should work in many cases, where least-squares methods fail in the automatic structure determination of a partially known molecule.

Variants of the method are feasible. One possibility for a Fourier synthesis with resolved peaks is to select an initial set of peak positions (analogous to the normal successive Fourier analysis) and to attach to them weights, determined from the peak height in the Fourier synthesis. These weights are then continuously changed according to the weighting function of our method. Another variant would be to apply some leastsquares cycles (similar to the method of Rollett & Hodgson), not starting with initial weights $g_j = 0$ for unknown atoms, but with weights set after the heights in the initial Fourier synthesis. After applying the weighting procedure of phase correction, a selection of significant peaks should be easier.

This publication has been supported by the Deutsche Forschunggemeinschaft, the Fonds der Chemischen Industrie and the Badische Anilin- & Soda-Fabrik. We should like to express our sincere thanks.

References

- GASSMANN, J. (1966). Acta Cryst. 21, A6.
- HOPPE W. (1957). Acta Cryst. 10, 750.
- HOPPE, W., HUBER, R. & GASSMANN, J. (1963). Acta Cryst. 16, A4.
- HOPPE, W. (1963). Z. Kristallogr. 118, 121.
- HOPPE, W. (1966). Angew. Chem. 5, 267.
- HOPPE, W., WILL, G., GASSMANN, J. & WEICHSELGARTNER, H. (1967). Z. Kristallogr. In the press.
- LUZZATI, V. (1953). Acta Cryst. 6, 142.
- OKAYA, J. (1964). Acta Cryst. 17, 1276.
- RAMACHANDRAN, G. N. (1964). Advanced Methods of Crystallography, pp.25–65.
- ROLLETT, J. & HODGSON, L. (1962). Symposium 50 Jahre Röntgeninterferenzen, München.
- WOOLFSON, M. M. (1958). Acta Cryst. 11, 277.